Transfer learning approach for financial applications
نویسندگان
چکیده
Artificial neural networks learn how to solve new problems through a computationally intense and time consuming process. One way to reduce the amount of time required is to inject preexisting knowledge into the network. To make use of past knowledge, we can take advantage of techniques that transfer the knowledge learned from one task, and reuse it on another (sometimes unrelated) task. In this paper we propose a novel selective breeding technique that extends the transfer learning with behavioural genetics approach proposed by Kohli, Magoulas and Thomas (2013), and evaluate its performance on financial data. Numerical evidence demonstrates the credibility of the new approach. We provide insights on the operation of transfer learning and highlight the benefits of using behavioural principles and selective breeding when tackling a set of diverse financial applications problems. Keywords—transfer learning, artificial neural networks, genetic algorithms, population studies, behavioural genetics, selective breeding, financial applications
منابع مشابه
An Adaptive Congestion Alleviating Protocol for Healthcare Applications in Wireless Body Sensor Networks: Learning Automata Approach
Wireless Body Sensor Networks (WBSNs) involve a convergence of biosensors, wireless communication and networks technologies. WBSN enables real-time healthcare services to users. Wireless sensors can be used to monitor patients’ physical conditions and transfer real time vital signs to the emergency center or individual doctors. Wireless networks are subject to more packet loss and congestion. T...
متن کاملHierarchical Functional Concepts for Knowledge Transfer among Reinforcement Learning Agents
This article introduces the notions of functional space and concept as a way of knowledge representation and abstraction for Reinforcement Learning agents. These definitions are used as a tool of knowledge transfer among agents. The agents are assumed to be heterogeneous; they have different state spaces but share a same dynamic, reward and action space. In other words, the agents are assumed t...
متن کاملMachine learning algorithms for time series in financial markets
This research is related to the usefulness of different machine learning methods in forecasting time series on financial markets. The main issue in this field is that economic managers and scientific society are still longing for more accurate forecasting algorithms. Fulfilling this request leads to an increase in forecasting quality and, therefore, more profitability and efficiency. In this pa...
متن کاملA Multimodal Approach toward Teaching for Transfer: A Case of Team-Teaching in ESAP Writing Courses
This paper presents a detailed examination of learning transfer from an English for Specific Academic Purposes course to authentic discipline-specific writing tasks. To enhance transfer practices, a new approach in planning writing tasks and materials selection was developed. Concerning the conventions of studies in learning transfer that acknowledge different learning preferences, the instruct...
متن کاملA Comparative Study of the Predictive Factors of Learning Transfer to Workplace in Public and Private Hospitals
Introduction: The effectiveness of organizational training courses depends on learning transfer to workplace; therefore, identifying the predictor’s transfer of learning has become one of the Necessities in human resource development. On the other hand, recent studies support the idea that the predictor’s transfer of learning are influenced by culture and context of each organization. In accord...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1509.02807 شماره
صفحات -
تاریخ انتشار 2015